
Chapter 7

Though These Be Methods,  
Yet There Is Madness in’t

In This Chapter
▶ Matching Java types
▶ Calling methods effectively
▶ Understanding method parameters

I 
n Chapter 5, I compare a method declaration to a recipe for scrambled 
eggs. In this chapter, I compute the tax and tip for a meal in a restaurant. 

And in Chapter 9 (spoiler alert!), I compare a Java class to the inventory in a 
cheese emporium. These comparisons aren’t far-fetched. A method’s  
declaration is a lot like a recipe, and a Java class bears some resemblance to 
a blank inventory sheet. But instead of thinking about methods, recipes,  
and Java classes, you might be reading between the lines. You might be  
wondering why this author uses so many food metaphors.

The truth is, my preoccupation with food is a recent development. Like 
most men my age, I’ve been told that I should shed my bad habits, lose a few 
pounds, exercise regularly, and find ways to reduce the stress in my life. (I’ve 
argued to my Wiley editors that submission deadlines are a source of stress, 
but so far the editors aren’t buying a word of it. I guess I don’t blame them.)

Above all, I’ve been told to adopt a healthy diet: Skip the chocolate, the 
cheeseburgers, the pizza, the fatty foods, the fried foods, the sugary snacks, 
and everything else that I normally eat. Instead, eat small portions of  
vegetables, carbs, and protein, and eat these things only at regularly  
scheduled meals. Sounds sensible, doesn’t it?

I’m making a sincere effort. I’ve been eating right for about two weeks. My 
feelings of health and well-being are steadily improving. I’m only slightly 
hungry. (Actually, by “slightly hungry,” I mean “extremely hungry.” Yesterday 
I suffered a brief hallucination, believing that my computer keyboard was a 
giant Hershey’s bar. And this morning I felt like gnawing on my office furniture. 
If I start trying to peeling my mouse, I’ll stop writing and go out for a snack.)



166 Part II: Writing Your Own Java Programs 

One way or another, the gustatory arena provides many fine metaphors 
for object-oriented programming. A method’s declaration is like a recipe. A 
declaration sits quietly, doing nothing, waiting to be executed. If you create 
a declaration but no one ever calls your declaration, then like a recipe for 
worm stew, your declaration goes unexecuted.

On the other hand, a method call is a call to action — a command to follow 
the declaration’s recipe. When you call a method, the method’s declaration 
wakes up and follows the instructions inside the body of the declaration.

In addition, a method call may contain parameters. You call

JOptionPane.showMessageDialog (null, ticketPrice) 

with the parameters null and ticketPrice. The first parameter, null, 
tells the computer not to house the dialog box inside another window. The 
second parameter, ticketPrice, tells the computer what to display in the 
dialog box. In the world of food, you might call meatLoaf(6), which means, 
“Follow the meat loaf recipe, and make enough to serve six people.”

A method has two facets: the first is the method’s declaration; the second 
consists of any statements making calls to the method.

Practice Safe Typing
“You can’t fit a square peg into a round hole,” or so the saying goes. In Java 
programming, the saying goes one step further: “Like all other developers, 
you sometimes make a mistake and try to fit a square peg into a round hole. 
Java’s type system alerts you to the mistake and doesn’t let you run the 
flawed code.”

Here’s an example illustrating pegs and holes: According to the U.S. census, 
the average number of children per family in the year 2000 was 0.9. But by 
mid-2000, the Duggar family (of 19 Kids & Counting television fame) had 12 
children. No matter when you take the census, the average number of children 
is a double value, and the number of children in a particular family is an int 
value.

In Figure 7-1, I try to calculate the Duggar family’s divergence from the 
national average. I don’t even show you a run of this program, because the 
program doesn’t work. It’s defective. It’s damaged goods. As cousin Jeb 
would say, “This program is a dance party on a leaky raft in a muddy river.”



167 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 

Figure 7-1: 
Trying to fit 

a square 
peg into a 

round hole.
 

The code in Figure 7-1 deals with two types of values — double values (in 
the averageNumberOfKids variable) and int values (in the numberOf 
DuggarKids variable). You might plan to type 1 when the computer 
prompts you for Average kids per family. But the value stored in the 
averageNumberOfKids variable is of type double. An input like 1 or 1.0 
doesn’t scare the computer into storing anything but a double in the  
averageNumberOfKids variable.

The expression numberOfDuggarKids - averageNumberOfKids is an 
int minus a double, so (according to my sage advice in Chapter 6) the value 
of numberOfDuggarKids - averageNumberOfKids is of type double. 
Sure, if you type 1 when you’re prompted for Average kids per family, 
then numberOfDuggarKids - averageNumberOfKids is 11.0, and 11.0 is 
sort of the same as the int value 11. But Java doesn’t like things to be “sort 
of the same.”

Java’s strong typing rules say that you can’t assign a double value (like 11.0) 
to an int variable (like anotherDifference). You don’t lose any accuracy 
when you chop the .0 off 11.0. But with digits to the right of the decimal point 
(even with 0 to the right of the decimal point), Java doesn’t trust you to stuff 
a double value into an int variable. After all, rather than type 1.0 when 
you’re prompted for Average kids per family, you can type 0.9. Then 
you’d definitely lose accuracy, from stuffing 11.1 into an int variable.

You can try to assure Java that things are okay by using a plain, old assignment 
statement, like this:

double averageNumberOfKids;
averageNumberOfKids = 1;



168 Part II: Writing Your Own Java Programs 

When you do, the only way for numberOfDuggarKids - averageNumber 
OfKids to have any value other than 11.0 is for you to make more changes 
to the Java code. Even so, Java doesn’t like assigning 11.0 to the int variable 
anotherDifference. This statement is still illegal:

anotherDifference = 
              numberOfDuggarKids - averageNumberOfKids;

 When you put numbers in your Java code (like 1 in the previous paragraph 
or like the number 12 in Figure 7-1) you hardcode the values. In this book, my 
liberal use of hardcoding keeps the examples simple and (more importantly) 
concrete. But in real applications, hardcoding is generally a bad idea. When 
you hardcode a value, you make it difficult to change. In fact, the only way to 
change a hardcoded value is to tinker with the Java code, and all code (written 
in Java or not) can be brittle. It’s much safer to input values in a dialog box (or 
to read the value from a hard drive or an SD card) than to change a value in a 
piece of code.

Remember to do as I say and not as I do. Avoid hardcoding values in your 
programs.

Widening is good; narrowing is bad
Java prevents you from making any assignment that potentially narrows a 
value, as shown in Figure 7-2. For example, if with the declarations

int numberOfDuggarKids = 12;
long lotsAndLotsOfKids;

the following attempt to narrow from a long value to an int value is illegal:

numberOfDuggarKids = lotsAndLotsOfKids; //Don’t do this!

An attempt to widen from an int value to a long value, however, is fine:

lotsAndLotsOfKids = numberOfDuggarKids;

In fact, back in Figure 7-1, I assign an int value to a double value with no 
trouble at all:

double difference;
difference = numberOfDuggarKids - averageNumberOfKids;

Assigning an int value to a double value is legal because it’s an example of 
widening.



169 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 

Figure 7-2: 
Widening 

and  
narrowing.

 

Incompatible types
Aside from the technical terms narrowing and widening, there’s another  
possibility — plain, old incompatibility — trying to fit one element into 
another when the two have nothing in common and have no hope of ever 
being mistaken for one another. You can’t assign an int value to a boolean 
value or assign a boolean value to an int value:

int numberOfDuggarKids;
boolean isLarge;
numberOfDuggarKids = isLarge; //Don’t do this!
isLarge = numberOfDuggarKids; //Don’t do this!

You can’t do either assignment because boolean values aren’t numeric. In 
other words, neither of these assignments makes sense.

 Java is a strongly typed computer programming language. It doesn’t let you 
make assignments that might result in a loss of accuracy or in outright  
nonsense.

Using a hammer to bang a peg into a hole
In some cases, you can circumvent Java’s prohibition against narrowing by 
casting a value. For example, you can create the long variable lotsAnd 
LotsOfKids and make the assignment numberOfDuggarKids = (int) 
lotsAndLotsOfKids, as shown in Listing 7-1.



170 Part II: Writing Your Own Java Programs 

Listing 7-1: Casting to the Rescue
package com.allmycode.stats;

import javax.swing.JOptionPane;

public class MoreKids {

  public static void main(String[] args) {
    long lotsAndLotsOfKids = 2147483647;
    int numberOfDuggarKids;

    numberOfDuggarKids = (int) lotsAndLotsOfKids;

    JOptionPane.showMessageDialog
                      (null, numberOfDuggarKids);
  }

}

The type name (int) in parentheses is a cast operator. It tells the computer 
that you’re aware of the potential pitfalls of stuffing a long value into an int 
variable and that you’re willing to take your chances.

When you run the code in Listing 7-1, the value of lotsAndLotsOfKids 
might be between –2147483648 and 2147483647. If so, the assignment 
numberOfDuggarKids = (int) lotsAndLotsOfKids is just fine. 
(Remember: An int value can be between –2147483648 and 2147483647. 
Refer to Table 6-1.)

But if the value of lotsAndLotsOfKids isn’t between –2147483648 and 
2147483647, the assignment statement in Listing 7-1 goes awry. When I run 
the code in Listing 7-1 with the different initialization

long lotsAndLotsOfKids = 2098797070970970956L;

the value of numberOfDuggarKids. becomes –287644852 (a negative 
number!).

When you use a casting operator, you’re telling the computer, “I’m aware that 
I’m doing something risky but (trust me) I know what I’m doing.” And if you 
don’t know what you’re doing, you get a wrong answer. That’s life!

Calling a Method
After all the fuss I make in the previous section over type safety for assignment 
statements, I should give equal time to type safety for method calls. After all, 
a method call involves values going both ways — from the call to the running 
method and from the running method back to the call. Here are the details:



171 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 ✓ In a method call, each parameter has a value. The computer sends 
that value to one of the declaration’s parameters.

  In a method call, each parameter has a type. The types of the parameters 
in the method’s declaration must match the types of parameters in the 
method call.

 ✓ A method declaration might contain a return statement, and the 
return statement might calculate a particular value. If so, the  
computer assigns that value back to the entire method call.

  A method’s return type is the type of value calculated by the return 
statement. So the return type is the type of the method call’s value.

To make this concept more concrete, consider the code in Listing 7-2.

Listing 7-2: Parameter Types and Return Types
package com.allmycode.money;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class Mortgage {

  public static void main(String[] args) {
    double principal = 100000.00, ratePercent = 5.25;
    double payment;
    int years = 30;
    String paymentString;

    payment =
        monthlyPayment(principal, ratePercent, years);

    NumberFormat currency =
        NumberFormat.getCurrencyInstance();
    paymentString = currency.format(payment);
    JOptionPane.showMessageDialog(null,
        paymentString, “Monthly payment”,
        JOptionPane.INFORMATION_MESSAGE);

  }

  static double monthlyPayment
   (double pPrincipal, double pRatePercent, int pYears) {

    double rate, effectiveAnnualRate;
    int paymentsPerYear = 12, numberOfPayments;
    rate = pRatePercent / 100.00;
    numberOfPayments = paymentsPerYear * pYears;
    effectiveAnnualRate = rate / paymentsPerYear;

(continued)



172 Part II: Writing Your Own Java Programs 

Listing 7-2 (continued)
   return pPrincipal * (effectiveAnnualRate /
             (1 - Math.pow(1 + effectiveAnnualRate,
               -numberOfPayments)));
  }

}

 Again, to keep the example simple, I hardcode the values of the variables 
principal, ratePercent, and years, making Listing 7-2 useless for any-
thing except one particular calculation. In a real app, you’d ask the user for 
the values of these variables.

Figure 7-3 shows the output of a run of the code in Listing 7-2.

 

Figure 7-3: 
Pay it and 

weep.
 

In Listing 7-2, I choose the parameter names principal and pPrincipal, 
ratePercent and pRatePercent, and years and pYears. I use the letter 
p to distinguish a declaration’s parameter from a call’s parameter. I do this to 
drive home the point that the names in the call aren’t automatically the same 
as the names in the declaration. In fact, there are many variations on this 
call/declaration naming theme, and they’re all correct. For example, you can 
use the same names in the call as in the declaration:

  payment =
      monthlyPayment(principal, ratePercent, years);

static double monthlyPayment
 (double principal, double ratePercent, int years) {

You can use expressions in the call that aren’t single variable names:

  payment =
      monthlyPayment(amount + fees, rate * 100, 30);

static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears) {



173 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

When you call a method from Java’s API, you don’t even know the names of 
parameters used in the method’s declaration. And you don’t care. The  
only things that matter are the positions of parameters in the list and the 
compatibility of the parameters:

 ✓ The value of the call’s leftmost parameter becomes the value of  
the declaration’s leftmost parameter, no matter what name the  
declaration’s leftmost parameter has.

  Of course, the types of the two leftmost parameters (the call’s  
parameter and the declaration’s parameter) must be compatible.

 ✓ The value of the call’s second parameter becomes the value of the  
declaration’s second parameter, no matter what name the declaration’s 
second parameter has.

  And so on.

 Real Java developers start the names of variables and methods with  
lowercase letters. You can ignore this convention and create a method named 
MonthlyPayment or MONTHLY_PAYMENT, for example. But if you ignore the 
convention, some developers will wince when they read your code.

Method parameters and Java types
Listing 7-2 contains both the declaration and a call for the monthlyPayment 
method. Figure 7-4 illustrates the type matches between these two parts of 
the program.

 

Figure 7-4: 
Each value 

fits like a 
glove.

 



174 Part II: Writing Your Own Java Programs 

In Figure 7-4, the monthlyPayment method call has three parameters, and 
the monthlyPayment declaration’s header has three parameters. The call’s 
three parameters have the types double and then double and then int. 
And sure enough, the declaration’s three parameters have the types double 
and then double and then int.

As in the earlier section “Practice Safe Typing,” you don’t need an exact 
match between a method call’s parameter and the declaration’s parameter. 
You can take advantage of widening. For example, in Listing 7-2, adding the 
following call would be okay:

payment = monthlyPayment(100000, 5, years);

You can pass an int value (like 100000) to the pPrincipal parameter, 
because the pPrincipal parameter is of type double. Java widens the 
values 100000 and 5 to the values 100000.0 and 5.0. But, once again, Java 
doesn’t narrow your values. The following call causes a big red blotch in the 
Eclipse editor:

payment = monthlyPayment(principal, ratePercent, 30.0);

You can’t stuff a double value (like 30.0) into the pYears parameter, 
because the pYears parameter is of type int.

 In a method declaration, each parameter has the form

typeName variableName

For example, in the declaration that starts with static double 
monthlyPayment(double pPrincipal, the word double is a typeName,  
and the word pPrincipal is a variableName. But in a method call, 
each parameter is an expression with a certain value. In the main method 
in Listing 7-2, the call monthlyPayment(principal, ratePercent, 
years) contains three parameters: principal, ratePercent, and years. 
Each of these parameters has a value. So with the initializations in the main 
method, the call monthlyPayment(principal, ratePercent, years) 
is essentially the same as calling monthlyPayment(100000.00, 5.25, 
30). In fact, a call like monthlyPayment(100000.00, 5.25, 30) or 
monthlyPayment(10 * 1000.00, 5 + 0.25, 30) is legal in Java. A 
method call’s parameters can be expressions of any kind. The only requirement 
is that the expressions in the call have types that are compatible with the 
corresponding parameters in the method’s declaration.



175 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Return types
A method declaration’s header normally looks like this:

someWords returnType methodName(parameters) {

For example, Listing 7-2 contains a method declaration with the following 
header:

static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears)

In this header, the returnType is double, the methodName is monthly 
Payment, and the parameters are double pPrincipal, double 
pRatePercent, int pYears.

 A method declaration’s parameter list differs from the method call’s parameter 
list. The declaration’s parameter list contains the name of each parameter’s 
type. In contrast, the call’s parameter list contains no type names.

An entire method call can have a value, and the declaration’s returnType 
tells the computer what type that value has. In Listing 7-2, the returnType is 
double, so the call

monthlyPayment(principal, ratePercent, years)

has a value of type double. (Refer to Figure 7-4.)

I hardcoded the values of principal, ratePercent, and years in Listing 7-2. 
So when you run Listing 7-2, the value of the monthlyPayment method call 
is always 552.20. The call’s value is whatever comes after the word return 
when the method is executed. And in Listing 7-2, the expression

pPrincipal * (effectiveAnnualRate /
  (1 - Math.pow(1 + effectiveAnnualRate,
    -numberOfPayments)))

always comes out to be 552.20. Also, in keeping with the theme of type safety, 
the expression after the word return is of type double.

In summary, a call to the monthlyPayment method has the return value 
552.20 and has the return type double.



176 Part II: Writing Your Own Java Programs 

 Only book authors and bad programmers hardcode values like principal, 
ratePercent, and years. I hardcoded these values to keep the example as 
simple as possible. But, normally, values like these should be part of the  
program’s input so that the values can change from one run to another.

The great void
A method to compute a monthly mortgage payment naturally returns a value. 
But a Java program’s main method, or Java’s own showMessageDialog 
method (with no user input), has little reason to return a value.

When a method doesn’t return a value, the method’s body has no return 
statement. And, in place of a return type, the header in the method’s  
declaration contains the word void. A program’s main method doesn’t 
return a value, so when you create a main method, you type

public static void main(String args[]) {

 To be painfully precise, you can put a return statement in a method that 
doesn’t return a value. When you do, the return statement has no expression. 
It’s just one word, return, followed by a semicolon. When the computer 
executes this return statement, the computer ends the run of the method 
and returns to the code that called the method. This rarely used form of the 
return statement works well in a situation in which you want to end the 
execution of a method before you reach the last statement in the method’s 
declaration.

Displaying numbers
Here are a few lines that are scattered about in Listing 7-2:

import java.text.NumberFormat;

NumberFormat currency =
        NumberFormat.getCurrencyInstance();
paymentString = currency.format(payment);

Taken together, these statements give you easy formatting of numbers into 
local currency amounts. On my computer, when I call getCurrency 
Instance() with no parameters, I get a number (like 552.2) formatted for 
United States currency. (Refer to Figure 7-3.) But if your computer is set to 
run in Germany, you see the message box shown in Figure 7-5.



177 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 

Figure 7-5: 
Displaying 

the euro 
symbol.

 

A country, its native language, or a variant of the native language is a locale. 
And by adding a parameter to the getCurrencyInstance call, you can 
format for locales other than your own. For example, by calling

NumberFormat.getCurrencyInstance(Locale.GERMANY)

anyone in any country can get the message box shown in Figure 7-5.

In the choice of available locales, standard Oracle Java is a bit better than 
Android Java. For example, the Locale.GERMANY trick works in standard 
Java and in Android Java. But some variants of the Thai language use their 
own, special digit symbols. (See Figure 7-6.) To form a number with Thai 
digits, you need

NumberFormat.getCurrencyInstance(
                           new Locale(“th”, “TH”, “TH”))

And this locale works only in standard Java.

 

Figure 7-6: 
Thai digit 
symbols.

 

Method overload without software bloat
Chapter 5 introduces method overloading. But that chapter doesn’t show you 
a complete example using method overloading. Listing 7-3 remedies this  
situation.



178 Part II: Writing Your Own Java Programs 

Listing 7-3: Filling but Not Fatty (Yes, I’m Still Hungry)
package com.allmycode.money;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class Mortgage {

  public static void main(String[] args) {
    double principal = 100000.00, ratePercent = 5.25;
    double payment;
    int years = 30;
    String paymentString;
    NumberFormat currency =
        NumberFormat.getCurrencyInstance();

    payment =
        monthlyPayment(principal, ratePercent, years);
    paymentString = currency.format(payment);
    JOptionPane.showMessageDialog(null,
        paymentString, “Monthly payment”,
        JOptionPane.INFORMATION_MESSAGE);

    ratePercent = 3.0;
    payment = monthlyPayment(principal, ratePercent);
    paymentString = currency.format(payment);
    JOptionPane.showMessageDialog(null,
        paymentString, “Monthly payment”,
        JOptionPane.INFORMATION_MESSAGE);

    payment = monthlyPayment();
    paymentString = currency.format(payment);
    JOptionPane.showMessageDialog(null,
        paymentString, “Monthly payment”,
        JOptionPane.INFORMATION_MESSAGE);

  }

  static double monthlyPayment
   (double pPrincipal, double pRatePercent, int pYears) {

    double rate, effectiveAnnualRate;
    int paymentsPerYear = 12, numberOfPayments;
    rate = pRatePercent / 100.00;
    numberOfPayments = paymentsPerYear * pYears;
    effectiveAnnualRate = rate / paymentsPerYear;
    return pPrincipal * (effectiveAnnualRate /
             (1 - Math.pow(1 + effectiveAnnualRate,
               -numberOfPayments)));



179 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

  }

  static double monthlyPayment
   (double pPrincipal, double pRatePercent) {

    return monthlyPayment(pPrincipal, pRatePercent, 30);
  }

  static double monthlyPayment() {
    return 0.0;
  }
}

The three dialog boxes that you see when you run the code in Listing 7-3 are 
shown in Figure 7-7.

In Listing 7-3, the monthlyPayment method has three declarations, each 
with its own parameter list, and with each parameter list representing a  
different bunch of types. As a method name, the name monthlyPayment is 
overloaded.

 ✓ The first monthlyPayment declaration is a copy of the declaration in 
Listing 7-2.

  When you call the first declaration, you supply values for three  
parameters — two double values and one int value:
monthlyPayment(principal, ratePercent, years)

 

Figure 7-7: 
Running 

the code in 
Listing 7-3.

 



180 Part II: Writing Your Own Java Programs 

 ✓ The second monthlyPayment declaration has only two parameters.

  When you call the second declaration, you supply values for only two 
double parameters:
monthlyPayment(principal, ratePercent)

  When the computer encounters this monthlyPayment call with two 
double parameters, the computer executes the monthlyPayment  
declaration that has two double parameters. (See Listing 7-3.) This 
automatic choice of method declaration is what makes overloading 
work.

  Notice the trick that I use in the body of the two-parameter monthly 
Payment declaration. To create the two-parameter declaration, I could 
get away with simply duplicating the code from the three-parameter 
monthlyPayment declaration:
// (Insert throat-clearing here.) This duplication
// of code isn’t a very good idea.
static double monthlyPayment
 (double pPrincipal, double pRatePercent) {

  double rate, effectiveAnnualRate;
  int paymentsPerYear = 12, numberOfPayments;
  rate = pRatePercent / 100.00;
  numberOfPayments = paymentsPerYear * 30;
  effectiveAnnualRate = rate / paymentsPerYear;
  return pPrincipal * (effectiveAnnualRate /
           (1 - Math.pow(1 + effectiveAnnualRate,
             -numberOfPayments)));
}

  But duplicating code is a bad idea. Copying and pasting code causes 
errors down the road. In Listing 7-3, I don’t copy the three-parameter 
code. Instead, I call the three-parameter monthlyPayment method from 
the body of the two-parameter monthlyPayment method. I supply a 
default value of 30 for the third pYears parameter. In the program’s 
documentation, I must state clearly that the two-parameter monthly 
Payment method assumes a 30-year mortgage term.

 ✓ The third monthlyPayment declaration has no parameters.

  When you call the third declaration in Listing 7-3, you don’t supply 
values for any parameters. Instead, you follow the method’s name with 
an empty pair of parentheses:
monthlyPayment()



181 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

  The parameterless monthlyPayment method might be useful in those 
don’t-know-what-else-to-do situations. You have to display something 
about a borrower who hasn’t yet decided on the principal, rate, or 
number of years. With little or no information about a mortgage loan, 
you display $0.00 as a temporary value for the borrower’s monthly 
payment.

For method overloading to work, the parameter types in a call must match 
the parameter types in a declaration. In Listing 7-3, no two monthlyPayment 
declarations have the same number of parameters, so parameter matching 
isn’t too challenging.

But there’s more to matching than having the same number of parameters. 
For example, you can add another two-parameter declaration to the code in 
Listing 7-3:

  static double monthlyPayment
    (double pPrincipal, int pYears) {

With this addition, you have more than one two-parameter monthly 
Payment declaration — an old declaration with two double parameters and 
a new declaration with a double parameter and an int parameter. If you 
call monthlyPayment(principal, 15), the computer calls the newly 
added method. It calls the new method because the new method, with its 
double and int parameters, is a better match for your call than the old 
monthlyPayment(double pPrincipal, double pRatePercent)  
declaration in Listing 7-3.

Primitive Types and Pass-by Value
Java has two kinds of types: primitive and reference. The eight primitive types 
are the atoms — the basic building blocks. In contrast, the reference  
types are the things you create by combining primitive types (and by  
combining other reference types).

 My coverage of Java’s reference types begins in Chapter 9.

Here are two concepts you should remember when you think about primitive 
types and method parameters:

 ✓ When you assign a value to a variable with a primitive type, you’re 
identifying that variable name with the value.



182 Part II: Writing Your Own Java Programs 

  The same is true when you initialize a primitive type variable to a  
particular value.

 ✓ When you call a method, you’re making copies of each of the call’s 
parameter values and initializing the declaration’s parameters with 
those copied values.

This scheme, in which you make copies of the call’s values, is named pass-by 
value. Listing 7-4 shows you why you should care about any of this.

Listing 7-4: Rack Up Those Points!
import javax.swing.JOptionPane;

public class Scorekeeper {

  public static void main(String[] args) {
    int score = 50000;
    int points = 1000;
    addPoints(score, points);
    JOptionPane.showMessageDialog(null, score,
        “New Score”, JOptionPane.INFORMATION_MESSAGE);
  }

  static void addPoints(int score, int points) {
    score += points;
  }

}

In Listing 7-4, the addPoints method uses Java’s compound assignment 
operator to add 1000 (the value of points) to the existing score (which is 
50000). To make things as cozy as possible, I’ve used the same parameter 
names in the method call and the method declaration. (In both, I use the 
names score and points.)

So what happens when I run the code in Listing 7-4? I get the result shown in 
Figure 7-8.

 

Figure 7-8: 
Getting 

1000 more 
points?

 



183 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

But wait! When you add 1000 to 50000, you don’t normally get 50000. What’s 
wrong?

With Java’s pass-by value feature, you make a copy of each parameter value 
in a call. You initialize the declaration’s parameters with the copied values. 
So immediately after making the call, you have two pairs of variables: the 
original score and points variables in the main method and the new  
score and points variables in the addPoints method. The new score  
and points variables have copies of values from the main method. (See 
Figure 7-9.)

 

Figure 7-9: 
Java makes 

copies of 
the values 

of variables.
 

The statement in the body of the addPoints method adds 1000 to the value 
stored in its score variable. After adding 1000 points, the program’s variables 
look like the stuff shown in Figure 7-10.

Notice how the value of the main method’s score variable remains 
unchanged. After returning from the call to addPoints, the addPoints 
method’s variables disappear. All that remains is the original main method 
and its variables. (See Figure 7-11.)



184 Part II: Writing Your Own Java Programs 

 

Figure 7-10: 
Java adds 

1000 to only 
one of the 
two score 
variables.

 

 

Figure 7-11: 
The vari-
able with 

value 51000 
no longer 

exists.
 

Finally, in Listing 7-4, the computer calls showMessageDialog to display the 
value of the main method’s score variable. And (sadly, for the game player) 
the value of score is still 50000.



185 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

What’s a developer to do?
The program in Listing 7-4 has a big, fat bug. The program doesn’t add 1000 
to a player’s score. That’s bad.

You can squash the bug in Listing 7-4 in several different ways. For example, 
you can avoid calling the addPoints method by inserting score += points 
in the main method. But that’s not a satisfactory solution. Methods such as 
addPoints are useful for dividing work into neat, understandable chunks. And 
avoiding problems by skirting around them is no fun at all.

Perils and pitfalls of parameter passing
How would you like to change the value of 
2 + 2? What would you like 2 + 2 to be? Six? 
Ten? Three hundred? In certain older versions 
of the FORTRAN programming language, 
you could make 2 + 2 be almost anything you 
wanted. For example, the following chunk of 
code (translated to look like Java code) would 
display 6 for the value of 2 + 2:
public void increment(int 

score) {
  score++;
}
...
increment(2);
JOptionPane.

showMessageDialog(null, 2 
+ 2);

When computer languages were first being 
developed, their creators didn’t realize how 
complicated parameter passing can be. 
They weren’t as careful about specifying the 
rules for copying parameters’ values or for 
doing whatever else they wanted to do with 
parameters. As a result, some versions of 
FORTRAN indiscriminately passed memory 
addresses rather than values. Though address-
passing alone isn’t a terrible idea, things 

become ugly if the language designer isn’t 
careful.

In some early FORTRAN implementations, the 
computer automatically (and without warning) 
turned the literal 2 into a variable named two. 
(In fact, the newly created variable probably 
wasn’t named two. But in this story, the actual 
name of the variable doesn’t matter.) FORTRAN 
would substitute the variable name two in any 
place where the programmer typed the literal 
value 2. But then, while running this sidebar’s 
code, the computer would send the address of 
the two variable to the increment method. 
The method would happily add 1 to whatever 
was stored in the two variable and then 
continue its work. Now the two variable stored 
the number 3. By the time you reached the 
showMessageDialog call, the computer 
would add to itself whatever was in two, 
getting 3 + 3, which is 6.

If you think parameter passing is a no-brainer, 
think again. Different languages use all 
different kinds of parameter passing. And in 
many situations, the minute details of the way 
parameters are passed makes a big difference.



186 Part II: Writing Your Own Java Programs 

A better way to get rid of the bug is to make the addPoints method return a 
value. Listing 7-5 has the code.

Listing 7-5: A New-and-Improved Scorekeeper Program
import javax.swing.JOptionPane;

public class Scorekeeper {

  public static void main(String[] args) {
    int score = 50000;
    int points = 1000;
    score = addPoints(score, points);
    JOptionPane.showMessageDialog(null, score,
        “New Score”, JOptionPane.INFORMATION_MESSAGE);
  }

  static int addPoints(int score, int points) {
    return score + points;
  }

}

In Listing 7-5, the new-and-improved addPoints method returns an 
int value; namely, the value of score + points. So the value of the 
addPoints(score, points) call is 51000. Finally, I change the value of 
score by assigning the method call’s value, 51000, to the score variable.

 Java’s nitpicky rules insure that the juggling of the score variable’s values 
is reliable and predictable. In the statement score = addPoints(score, 
points), there’s no conflict between the old value of score (50000 in the 
addPoints parameter list) and the new value of score (51000 on the left side 
of the assignment statement).

A run of the code in Listing 7-5 is shown in Figure 7-12. You probably already 
know what the run looks like. (After all, 50000 + 1000 is 51000.) But I can’t 
bear to finish this example without showing the correct answer.

 

Figure 7-12: 
At last, 

a higher 
score!

 



187 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 Making addPoints return a value isn’t the only way to correct the problem in 
Listing 7-4. At least two other ways (using fields and passing objects) are 
among the subjects of discussion in Chapter 9.

A final word
The program in Listing 7-6 displays the total cost of a $100 meal.

Listing 7-6: Yet Another Food Example
package org.allyourcode.food;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class CheckCalculator {

  public static void main(String[] args) {
    NumberFormat currency =
        NumberFormat.getCurrencyInstance();
    JOptionPane.showMessageDialog(null,
        currency.format(addAll(100.00, 0.05, 0.20)));
  }

  static double addAll
        (double bill, double taxRate, double tipRate) {
    bill *= 1 + taxRate;
    bill *= 1 + tipRate;
    return bill;
  }

}

A run of the program in Listing 7-6 is shown in Figure 7-13.

 

Figure 7-13: 
Support 

your local 
eating 

establish-
ment.

 



188 Part II: Writing Your Own Java Programs 

Listing 7-6 is nice, but this code computes the tip after the tax has been 
added to the original bill. Some of my less generous friends believe that the 
tip should be based on only the amount of the original bill. (Guys, you know 
who you are!) They believe that the code should compute the tax but that it 
should remember and reuse the original $100.00 amount when calculating the 
tip. Here’s my friends’ version of the addAll method:

static double addAll
      (double bill, double taxRate, double tipRate) {
  double originalBill = bill;
  bill *= 1 + taxRate;
  bill += originalBill * tipRate;
  return bill;
}

The new (stingier) total is shown in Figure 7-14.

 

Figure 7-14: 
A dollar 
saved is 
a dollar 
earned.

 

The revised addAll method is overly complicated. (In fact, in creating this 
example, I got this little method wrong two or three times before getting it 
right.) Wouldn’t it be simpler to insist that the bill parameter’s value never 
changes? Rather than mess with the bill amount, you make up new  
variables named tax and tip and total everything in the return statement:

static double addAll
      (double bill, double taxRate, double tipRate) {
  double tax = bill * taxRate;
  double tip = bill * tipRate;
  return bill + tax + tip;
}

When you have these new tax and tip variables, the bill parameter always 
stores its original value — the value of the untaxed, untipped meal.

After developing this improved code, you make a mental note that the bill 
variable’s value shouldn’t change. Months later, when your users are paying 
big bucks for your app and demanding many more features, you might turn 
the program into a complicated, all-purpose meal calculator with localized 
currencies and tipping etiquette from around the world. Whatever you do, 
you always want easy access to that original bill value.



189 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

After your app has gone viral, you’re distracted by the need to count your 
earnings, pay your servants, and maintain the fresh smell of your private jet’s 
leather seats. With all these pressing issues, you accidentally forget your old 
promise not to change the bill variable. You change the variable’s value 
somewhere in the middle of your 1000-line program. Now you’ve messed 
everything up.

But wait! You can have Java remind you that the bill parameter’s value 
doesn’t change. To do this, you add the keyword final (one of Java’s  
modifiers) to the method declaration’s parameter list. And while you’re at it, 
you can add final to the other parameters (taxRate and tipRate) in the 
addAll method’s parameter list:

static double addAll (final double bill,
                      final double taxRate,
                      final double tipRate) {
  double tax = bill * taxRate;
  double tip = bill * tipRate;
  return bill + tax + tip;
}

With this use of the word final, you’re telling the computer not to let you 
change a parameter’s value. If you plug the newest version of addAll into 
the code in Listing 7-6, bill becomes 100.00 and bill stays 100.00 throughout 
the execution of the addAll method. If you accidentally add the statement

bill += valetParkingFee;

to your code, Eclipse flags that line as an error because a final parameter’s 
value cannot be changed. Isn’t it nice to know that, with servants to manage 
and your private jet to maintain, you can still rely on Java to help you write a 
good computer program?



190 Part II: Writing Your Own Java Programs 


